第29章:28 哥德巴赫猜想(节选)
选自1978年2月17日《人民日报》。有删节。徐迟(1914—1997),浙江吴兴人,诗人、散文家。(节选)
要懂得哥德巴赫猜想是怎么一回事?只需把早先在小学三年级里就学到过的数学再来温习一下。那些12345,个十百千万的数字,叫做正整数。那些可以被2整除的数,叫做偶数。剩下的那些数,叫做奇数。还有一种数,如2,3,5,7,11,13等等,只能被1和它本数,而不能被别的整数整除的,叫做素数。除了1和它本数以外,还能被别的整数整除的,这种数如4,6,8,9,10,12等等就叫做合数。一个整数,如能被一个素数所整除,这个素数就叫做这个整数的素因子。如6,就有2和3两个素因子。如30,就有2,3和5三个素因子。好了,这暂时也就够用了。
1742年,哥德巴赫写信给欧拉时,提出了:每个不小于6的偶数都是两个素数之和。例如,6=3+3。又如,24=11+13等等。有人对一个一个的偶数都进行了这样的验算,一直验算到了3.3亿之数,都表明这是对的。但是更大的数目,更大更大的数目呢?猜想起来也该是对的。猜想应当证明。要证明它却很难很难。
整个18世纪没有人能证明它。
整个19世纪也没有人能证明它。
到了20世纪的20年代,问题才开始有了点儿进展。
很早以前,人们就想证明,每一个大偶数是两个“素因子不太多的”数之和。他们想这样子来设置包围圈,想由此来逐步、逐步证明哥德巴赫这个命题一个素数加一个素数(1+1)是正确的。
1920年,挪威数学家布朗,用一种古老的筛法(这是研究数论的一种方法)证明了:每一个大偶数是两个“素因子都不超9个的”数之和。布朗证明了:9个素因子之积加9个素因子之积,(9+9),是正确的。这是用了筛法取得的成果。但这样的包围圈还很大,要逐步缩小之。果然,包围圈逐步地缩小了。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5+5);1940年,他又证明了(4+4)。1956年,数学家维诺格拉多夫证明了(3+3)。1958年,我国数学家王元又证明了(2+3)。包围圈越来越小,越接近于(1+1)了。但是,以上所有证明都有一个弱点,就是其中的两个数没有一个是可以肯定为素数的。
早在1948年,匈牙利数学家兰恩另外设置了一个包围圈。开辟了另一战场,想来证明:每个大偶数都是一个素数和一个“素因子都不超过6个的”数之和。他果然证明了(1+6)。